Andreev reflection in two-dimensional topological insulators with either conserved or broken time-reversal symmetry

نویسندگان

  • Awadhesh Narayan
  • Stefano Sanvito
چکیده

We investigate Andreev reflection in two-dimensional heterojunctions formed by a superconductor in contact with a topological insulator ribbon either possessing or breaking time-reversal symmetry. Both classes of topological insulators exhibit perfect Andreev reflection, which is robust against disorder. This is assigned to topologically protected edge states. In the time-reversal symmetric case we show that doping one of the ribbon edges with magnetic impurities suppresses one Andreev channel, while no such suppression is seen in the broken symmetry situation. Based on this observation, we suggest a tabletop transport experiment able to distinguish between the two types of topological insulators, which does not involve the direct measurement of the material band structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection-Symmetric Second-Order Topological Insulators and Superconductors.

Second-order topological insulators are crystalline insulators with a gapped bulk and gapped crystalline boundaries, but with topologically protected gapless states at the intersection of two boundaries. Without further spatial symmetries, five of the ten Altland-Zirnbauer symmetry classes allow for the existence of such second-order topological insulators in two and three dimensions. We show t...

متن کامل

Bosonic topological crystalline insulators and anomalous symmetry fractionalization via the flux-fusion anomaly test

We introduce a method, dubbed the flux-fusion anomaly test, to detect certain anomalous symmetry fractionalization patterns in two-dimensional symmetry enriched topological (SET) phases. We focus on bosonic systems with Z2 topological order, and symmetry group of the form G = U(1)oG′, where G′ is an arbitrary group that may include spatial symmetries and/or time reversal. The anomalous fraction...

متن کامل

Photonic topological insulator with broken time-reversal symmetry.

A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin differenc...

متن کامل

Visualization of superparamagnetic dynamics in magnetic topological insulators

Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external magnetic field. We use scanning nanoSQUID (...

متن کامل

Three-dimensional topological photonic crystal with a single surface Dirac cone

A single Dirac cone on the surface is the hallmark of three-dimensional (3D) topological insulators, where the double degeneracy at the Dirac point is protected by time-reversal symmetry and the spin-splitting away from the point is provided by the spin-orbital coupling. Here we predict a single Dirac-cone surface state in a 3D photonic crystal, where the degeneracy at the Dirac point is protec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012